

About Us

AVL is the world's largest independent company for development, simulation and testing technology of powertrains (hybrid, combustion engines, transmission, electric drive, batteries and software) for passenger cars, trucks and large engines.

The headquarter of AVL is in Graz, Austria.

EXPERIENCE >70 years!

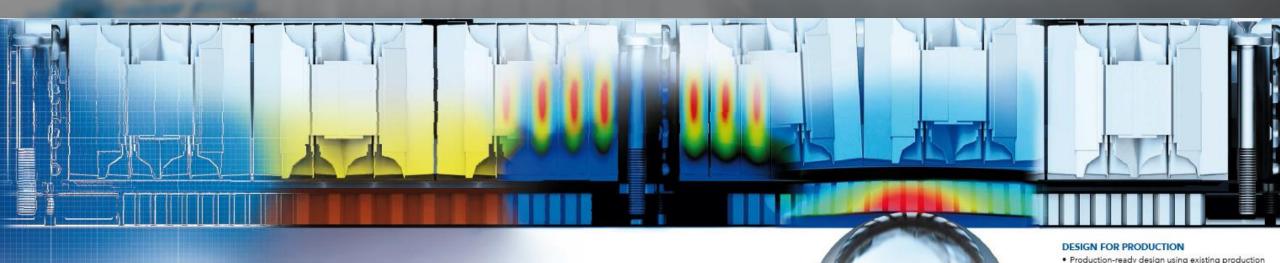
5 powertrain elements

RESEARCH 10% of turnover in-house R&D

INNOVATION 1,500 granted patents

STAFF 10,300 employees

65% engineers and scientists


GLOBAL FOOTPRINT

40 engineering locations

- **>220** testbeds
- Global customer support network

Concept development with AVL 25 concept points

Mechanical, electrical and thermal design

Thermal, mechanical and EMC simulation for development

Prototype based validation and verification

Design for **production**

production processes

technologies as well as newly designed and validated

 Dedicated team developing new production processes with a clear cost engineering focus

Series Battery Benchmarking with vehicle to screw analysis for benchmarking and development activities

STANDARDIZED WORK-PROCESS

Level 0: Vehicle Criteria Evaluation Level 1: Vehicle **Systems** Level 2: Elements Level 3: Elements Sub-**Systems** Level 4: HW Parts / SW Systems

6. Tear Down

7. Module Tests

8. Cell Tests

9. Cost Analysis

10. Abuse Tests

Deep dive battery benchmarking process: From vehicle to cell analysis involving all battery expert fields of AVL

AVL Series Baltiery Benc

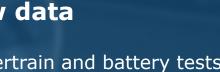
AVL 000

STANDARD DELIVERABLES

Work-package Reports

Pictures, test data, detailed analysis (dis-/advantages) & management summaries - up to 1000 pages.

Evaluation Report



Analysis of 8 benchmark attributes including the key findings of each benchmark.

Bill of Material

Part documentation with all component and sub-component related information.

Test and Measurement raw data

Powertrain and battery tests Cell perf. and abuse tests Selected 3D scans.

Hand-Over Workshops

in which the reports are presented and technical solutions, advantages and disadvantages are highlighted. At the AVL Benchmark Center or customer's premises.

YOUR CORE VALUE

Vehicle to cell analysis

Functions and performance on vehicle level is brought into context of design and parts.

Orientation in the target system

Comparable evaluation transparently shows strengths and weaknesses rated by AVL's senior battery experts.

Building functional understanding

AVL developed test program clearly shows function principles and their limits.

Worldwide experts for constant updates

4 new vehicles in the program / year benchmarked in China, US or Europe to be ahead of the market with the latest results.

AWI Series Eathery Rear

LATEST BENCHMARKED VEHICLES

Audi e-Tron Quattro

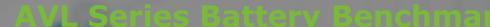
Hyundai Kona

JLR iPace

Tesla Model 3

Other available battery deep dive analysis:

- Chevrolet Bolt
- NIO ES8
- Volkswagen E-Golf
- Tesla Model X
- Mitsubishi Outlander
- Renault Zoe
- Tesla Model S


Coming soon:

Volkswagen ID3 Start: Q2 2020

Porsche Taycan Start: Q1 2020

Horizontal Comparison Example

- Comparison study of the following vehicle's battery systems -

Tesla Model 3

Chevrolet Bolt

Hyundai Kona

Parameter comparison

Vehicle structure

Operation robustness

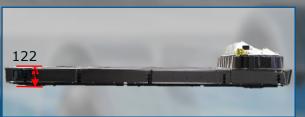
DC Charge strategy

COMPARED BATTERIES

	Tesla Model 3 Long Chevrolet Bolt Range 2018 2017		Hyundai Kona electric 150kW 2018
3D-Scan			
Battery Weight	457 kg	435 kg	452 kg
Battery Volume	314 l	306 I	390 I
Cell Type	Cylindrical 2170	LGX N2.1 Pouch	LGY E63B Pouch
Cell Capacity	4,6 Ah	60,5 Ah	60 Ah
Pack Specific Energy	166 Wh/kg	138 Wh/kg	142 Wh/kg
Pack Energy Density	240 Wh/l	196 Wh/l	164 Wh/l

COMPARED BATTERIES

	Tesla Model 3 Long Range 2018	Chevrolet Bolt 2017	Hyundai Kona electric 150kW 2018	
Energy Nominal	78 kWh	60 kWh	64 kWh	
Energy total C/3 25°C	74,9 kWh	61,9 kWh	65,7 kWh	
Energy usable	79,1 kWh	57,8 kWh	62,9 kWh	
Pack Specific Energy	166 Wh/kg	138 Wh/kg	142 Wh/kg	
Specific Energy, usable	173 Wh/kg	133 Wh/kg	139 Wh/kg	
Pack Energy Density	240 Wh/l	196 Wh/l	164 Wh/l	
Energy Density, usable	252 Wh/l	189 Wh/l	161 Wh/l	
Cell specific energy C/3, 25°C	247 Wh/kg	287 Wh/kg	251 Wh/kg	
Cell energy density C/3, 25°C	693 Wh/I	555 Wh/l	500 Wh/I	


Package efficiency

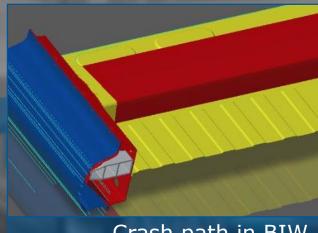
TESLA MODEL 3

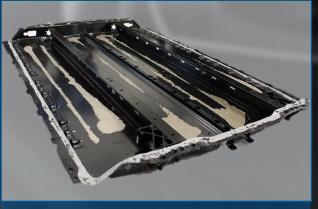
CHEVROLET BOLT

HYUNDAI KONA

Energy Nominal	78 kWh	60 kWh	64 kWh
Battery Weight	469 kg	435 kg	452 kg
Pack weight efficiency cell weight/pack weight	64 %	51 %	57 %
Battery Volume	314 l*	306 I	390 l
Pack volume efficiency	33%	37%	33%

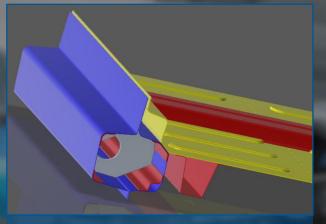
^{*} Excluding power conversion unit


Deep-Dive Housing – vehicle structure

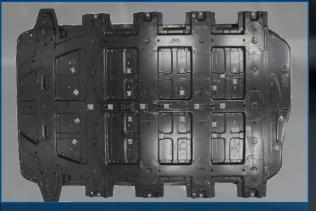

Crash Structure

Battery Tray

TESLA MODEL 3

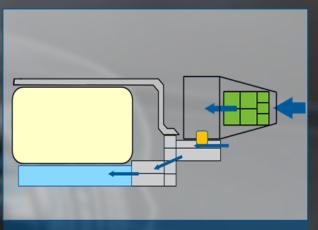


Crash path in BIW

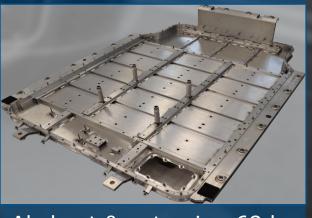


Al sheet & extrusion 54 kg

CHEVROLET BOLT



Crash path in pack



Sheet metal steel 65 kg

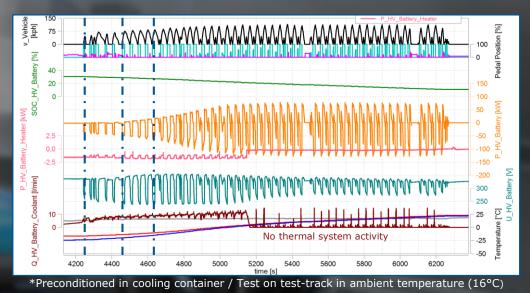
HYUNDAI KONA

Crash path in pack

Al sheet & extrusion 68 kg

Operation Robustness

- Low Temperature Performance -


CHEVROLET BOLT

Test Procedure

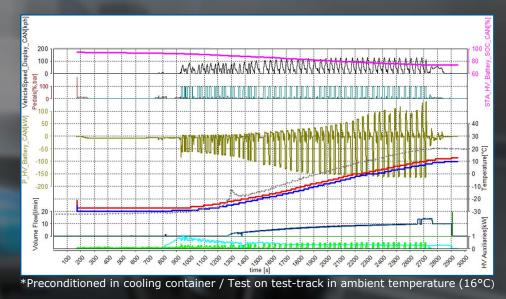
Full load acceleration repeating; high SoC; -30°C

Driving of sequenced full load accelerations with direct following decelerations with maximum recuperation at a high State of Charging

- Power at -20°C around 33% of normal
- Recuperation starts at -20°C
- No Operation under -24°C

Operation Robustness

- Low Temperature Performance -


HYUNDAI KONA

Test Procedure

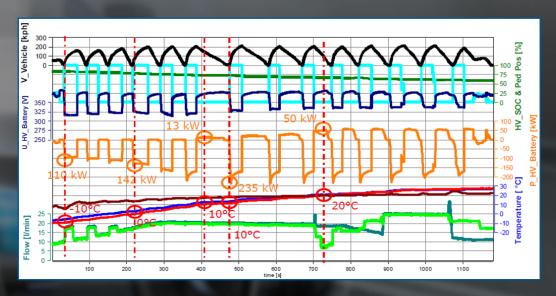
Full load acceleration repeating; high SoC; -30°C

Driving of sequenced full load accelerations with direct following decelerations with maximum recuperation at a high State of Charging

- Power at -20°C around 66% of normal
- Recuperation is 3% of normal
- More robust low temperature behavior

Operation Robustness

- Low Temperature Performance -


TESLA MODEL 3

Test Procedure

Full load acceleration repeating; high SoC; -10°C

- Same procedure as with the other two
- Preconditioning was not possible as battery was heated even in parking condition -> totally draining itself to shutdown

- Power at -10°C around 45% of normal
- Recuperation activation starts at 10°C
- Discharge is 44% of normal

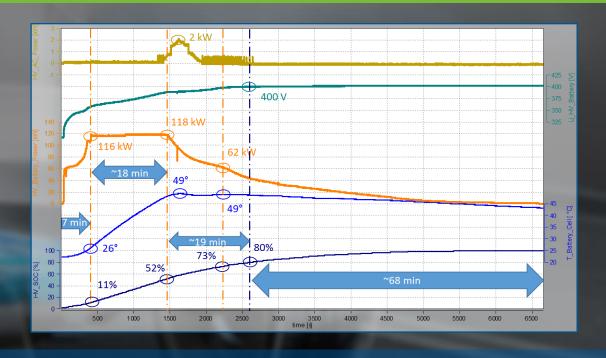
WARM UP

*		Tesla Model 3 Long Range 2018	Chevrolet Bolt 2017	Hyundai Kona electric 2018
Performance	Battery Heating	~2 kw (e-Drive waste heat during standstill)	~1,9 kW (PTC heater)	2,5 kW (possible e- Drive waste heat)
	Power at -20°C (Tesla -10°C)	N/A (45% @ -10°C)	33%	66%
Thermal	Battery Temperature (Start of Operation)	-20°C	-24°C	-29°C
	Battery Temperature (End of Discharge Derating)	>10°C	0°C	>3°C
Electrical	Recuperation Power at -5°C	0 kW	50 kW	40 kW
	Recuperation Power at 0°C	0 kW	62 kW	80 kW

AVE Series Battery Beach

AVL 0%

DC CHARGE STRATEGY


TESLA MODEL 3

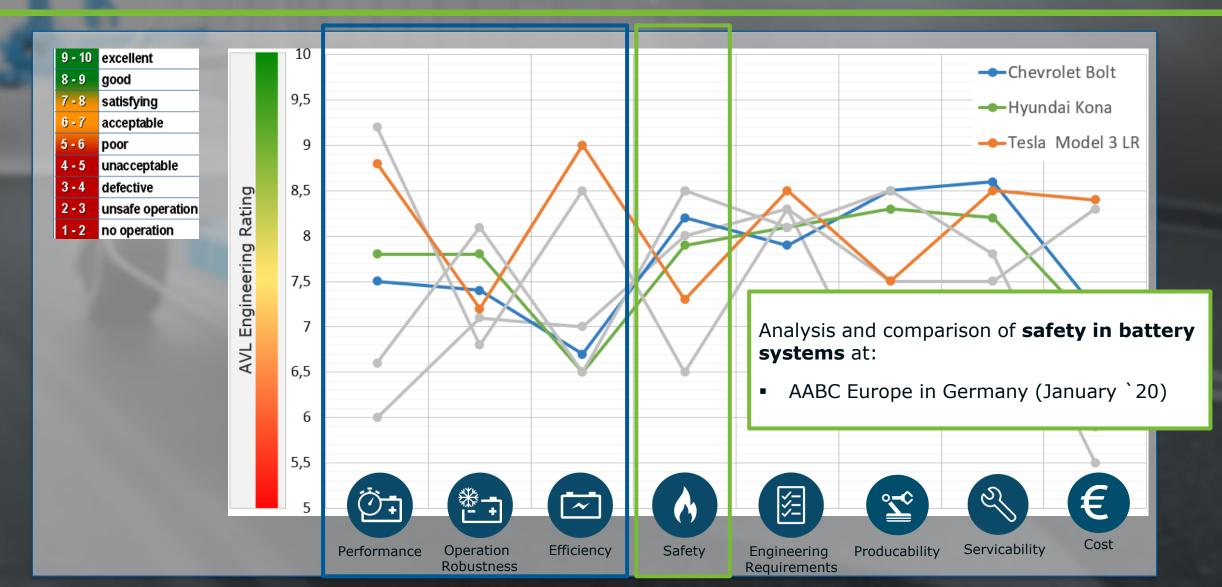
Test Procedure

Charging after overnight parking

Voltage nominal was 350V

- ~87 kW mean (119 kW peak)
- Full charge power up to 380V
- Active battery cooling in a small window
- Power derating voltage guided

DC CHARGE STRATEGY


- Tesla outruns the market greatly also due to vehicle efficiency -

+		Tesla Model 3 Long Range 2018	Chevrolet Bolt 2017	Hyundai Kona electric 2018
Performance	Battery Cooling during Charging	Active	Active	Active
	Charge Time until 80% SoC	44 min	1 h 25 min	1 h 03 min
	Avg. Charge Speed (WLTP normalized)	8,9 km/min	4,1 km/min	4,9 km/min
Thermal	Battery Temp. START	23°C	32°C	20°C
	Battery Temp. END	43°C	25°C	31°C
Electrical	MAX Charge Power	119 kW	55 kW	65 kW
	MEAN Charge Power until 80% SoC	87 kW	40 kW	45 kW

AVL Series Battery Benchmarkin

AVL 000

Scatterband - Conclusion

AWI Series Bathery Rene

LATEST BENCHMARKED VEHICLES

Audi e-Tron Quattro

Hyundai Kona

JLR iPace

Tesla Model 3

Other available battery deep dive analysis:

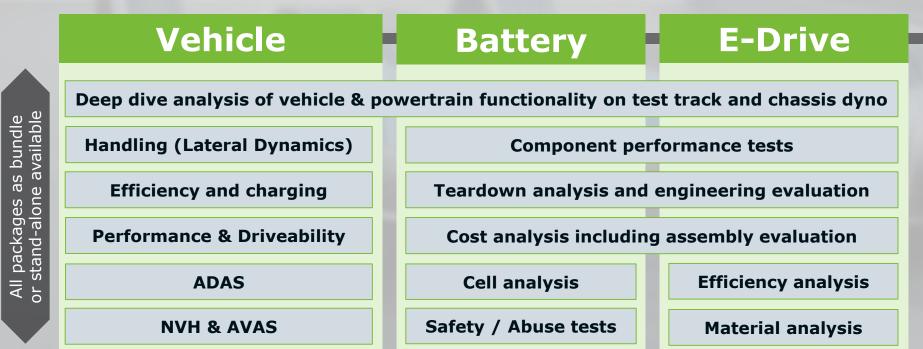
- Chevrolet Bolt
- NIO ES8
- Volkswagen E-Golf
- Tesla Model X
- Mitsubishi Outlander
- Renault Zoe
- Tesla Model S

Coming soon:

Volkswagen ID3 Start: Q2 2020

Porsche Taycan Start: Q1 2020

AVL 000



Porsche Taycan 800V Powertrain

AVL performs vehicle and component benchmarks based on AVL's proven benchmarking processes.

Core values:

- Objective assessment and comparison of vehicle and component attributes.
- Transparent identification and analysis of strengths and improvement potentials.
- Comparison to AVL's vehicle and component benchmark database.

First results available in Q1-2020. Order now and be ahead of the market!

