

Why inductive charging drives the transition to battery electric mobility!

Dr. Ralf Effenberger Managing Director INTIS GmbH

Munich, Wednesday the 16th of October 2019

Our Company

- INTIS has been founded in December 2011 in Hamburg and is 100% owned by IABG mbH near Munich
- 15 years experience of inductive charging technology
- Renowned project "Transrapid-Versuchsanlage Emsland" maglev test track (in use for more than 30 years)

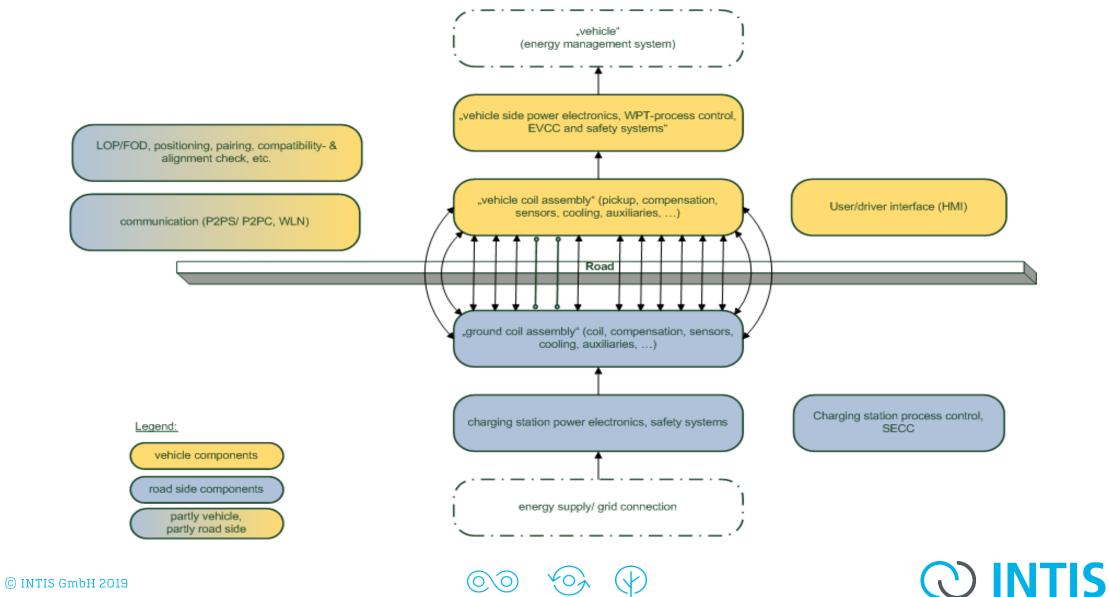
ि) INTIS

Our Focus

Charging Technology for e-Mobility:

- Wireless (WPT, inductive)
- Combined (WPT & DC-conductive)
- Public and industrial (road) applications
- WPT-standardization
- Turn-key solutions for stationary and (in the future) dynamic wireless charging
- Energy storage and -management systems

inductive charging station with retrofitted BMW-i3 (11kW)


Our Conviction – why INTIS focuses on Inductive Power Transfer

- The limited mileage and the large size (and cost) of batteries are still inhibiting electric propulsion from playing a significant role in the transport & mobility sector.
- Cable charging is only possible while stationary, dedicated charging time slots as well as "driver interaction" are required.
- This is where Wireless Power Transfer can help, even while the vehicle is on the move (known as Dynamic Wireless Power Transfer DWPT)
- Wireless Power Transfer allows electric vehicles to become as flexible as their internal combustion engine counterparts
- In combination with intelligent energy solutions, Wireless Power Transfer will mobilise the "renewably powered smart city" and will pave the way for autonomous driving.
- We have experienced that Inductive Power Transfer is a key technology in making the journey to electric mobility a success.

How Inductive Power Transfer works

Availability of WPT-Technology

... at INTIS:

	Inductive charging		Cable charging
Specification	IEC/ ISO or SAE	others	CCS, CHAdeMO
Charging power	up to 22 kW (in preparation for WPT 4)	according to customer / application requirements	up to 50 kW tested, higher powers with development effort
Air gap	Z-class 1 to 3	(up to 60 kW tested, higher powers	-
Coil type	to IEC-/ ISO or SAE specification	with development effort)	-
Frequency	80 90 kHz	36 40 90 kHz	-
Efficiency	above 90%		
Safety and assistance systems	detection of living- and foreign objects, positioning assistance, pairing, alignment check and many more		Overvoltage and overcurrent protection, galvanic separation of vehicle from grid
Vehicle internal communications	CAN or other (cu	-	
Communications with road infrastructure	WLAN ISO 15118, 868 MHz Near-Field, or customer specific -		
Vehicle high voltage interface (DC)	CCS, CHAdeMO, or directly with vehicle battery management system		CCS, CHAdeMO
Back-end connection	Internet connection via standard interface		
Application fields	passenger and light commercial vehicles	heavy and light vehicles, industrial vehicles, ships, etc.	All vehicles with a DC quick charging interface
Integration	Can be integrated with battery storage and renewable energy generation		

currently undergoing field testing ...

... industrial application

... application on private property

5

Application Examples (stationary or semi-dynamic)

• Automated industrial vehicles

- High flexibility in case of infrastructure modifications \rightarrow move your inductive charging stations with a minimum of construction
- Higher availability ightarrow fewer back-up vehicles due to more frequent opportunity charging
- Reduced Life Cycle Costs → Frequent opportunity charging allows to reduce the number of back-up vehicles
- Reduce maintenance and increase longevity ightarrow no wearing parts, operate your battery at optimum state of charge

• Autonomous shuttle

- Reduce operational costs ightarrow completely autonomous charging with no need for personnel
- Reduce costs and weight ightarrow smaller batteries possible with frequent opportunity charging
- Increase longevity ightarrow optimum charging pattern for the vehicles' batteries

• Bus

- Reduce costs and weight ightarrow smaller batteries possible with frequent opportunity charging
- Increase longevity \rightarrow reduced battery stress with more frequent, lower-power charging
- Low maintenance ightarrow no moving parts for minimum wear and tear
- Taxi waiting lane
 - High charging power \rightarrow charge approx. 100 km in 20 minutes
 - Maximise up-time ightarrow fewer breaks for charging needed, use dead-time to charge
 - Reduce costs \rightarrow drive using EV mode, minimise fuel consumption of PHEV's

Standardization

The roll-out of inductive charging on public ground/ for public use requires the finalisation of WPT-standards, e.g. covering:

- requirements and validation procedures (testing)
- electric & magnetic interoperability, reference designs
- communication means
- auxiliary systems & services (LOD, FOD, Compatibility check, alignment, etc.)

 \rightarrow most of the technical aspects are already covered

#	title	focus
IEC 61980-1	Electric vehicle wireless power transfer (WPT) systems Part 1: general requirements	Сом
IEC 61980-2	Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure with respect to wireless power transfer (WPT) systems	Сом
IEC 61980-3	Part 3: Specific requirements for the magnetic field wireless power transfer systems	Сом
ISO 19363	Electrically propelled road vehicles – Magnetic field wireless power transfer – safety and interoperability requirements	Сом
ISO/IEC 15118	Road vehicles – vehicle to grid communication interface	Сом
SAE J2954	Wireless charging of electric and plug-in hybrid vehicles	сом

Source: Nationale Plattform Elektromobilität

Finalization of standards (e.g. at IEC \rightarrow Roadmap):

Reference - Elect	Planning	
61980-1	Part 1: General requirements	mid 2020 (new edition)
61980-2	Part 2 specific requirements for communication between electric road vehicle (EV) and infrastructure with respect to wireless power transfer (WPT) systems	end 2020 (first edition)
61980-3	Part 3: Specific requirements for the magnetic field wireless power transfer systems	end 2020 (first edition)

Taking into account the availability of technology, progress in field testing and standardization roadmaps:

WPT-application field	What	Roadmap	
Industrial	Material handling, etc.	In operation for many years	
Rail	e.g. Maglev, Bombardier's PRIMOVE	In operation for several years	
Road - specific applications in private environment	e.g. Gen. 1 WPT	2019 +	
Road - specific applications in public environment	e.g. Bus, Taxi, city logistics, autonomous driving	In operation for many years (Bus) 2020 + (Taxi & city logistic) 2022 + (autonomous driving)	
Road - general public	All others	2024 +	

Availability of WPT-Technology – some frequently asked questions

Is WPT an AC- or a DC-Technology?

- although the energy is fed into the vehicle's propulsion battery as DC, the power transfer via the magnetic field takes place at e.g. 85kHz AC
 - → AC-Technology

How long does a WPT-charging sequence last?

• as for any other charging technology this depends on the charging power (e.g. 11kW - WPT3), the battery capacity and the battery state of charge when charging starts

What is the efficiency of inductive charging?

- standardization requires an efficiency of ≥ 85%
- our systems with the same coil-topology on both sides achieve an efficiency above 90% for automotive applications

What about EMC, EMF and temperature limits?

applicable limits will not be exceeded, additional detection means may have to be implemented (e.g. Living Object Detection - LOD, Foreign Object Detection - FOD)

Availability of WPT-Technology – some frequently asked questions

How difficult is the positioning of the vehicle over the roadside coil and what is the influence of coil displacement on efficiency?

- current standardisation requires a max. coil displacement of ±75mm (X-) and ±100mm (Y-direction)
- a positioning assistant helps to achieve a position within these limits, for efficiency see above

When will inductive charging be available for operation in a public environment?

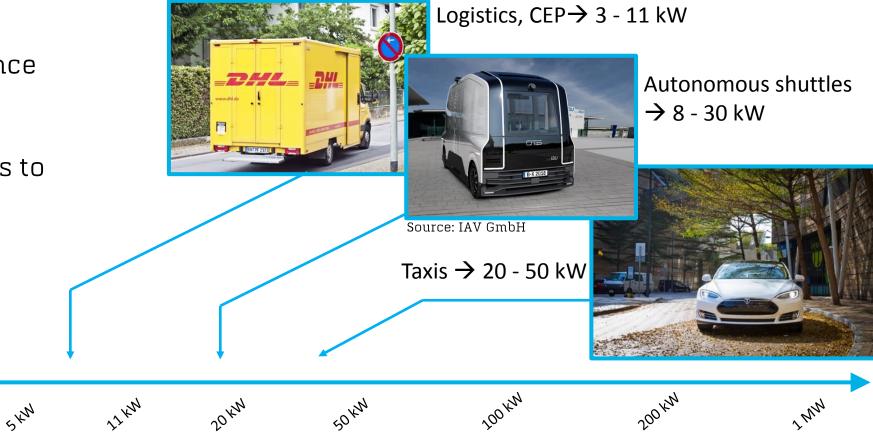
- The technology is available for use in public spaces now
- However standards must be finalised before WPT can be used as a "public application" (e.g. after the end of 2020)

What will inductive charging cost?

• final cost figures can not be given yet as mass production and industrial manufacturing processes have not started yet and not all requirements are known

(→ standardisation) has not been fixed yet; we aim at WPT-system costs comparable to the costs for DC-fast charging systems

(→ synergies, WPT-/DC-combined charging)



Application Areas – Stationary Charging

- Automatic
- Low maintenance
- Out of sight
- "Enabler"
- Reduce barriers to electrification

TKN

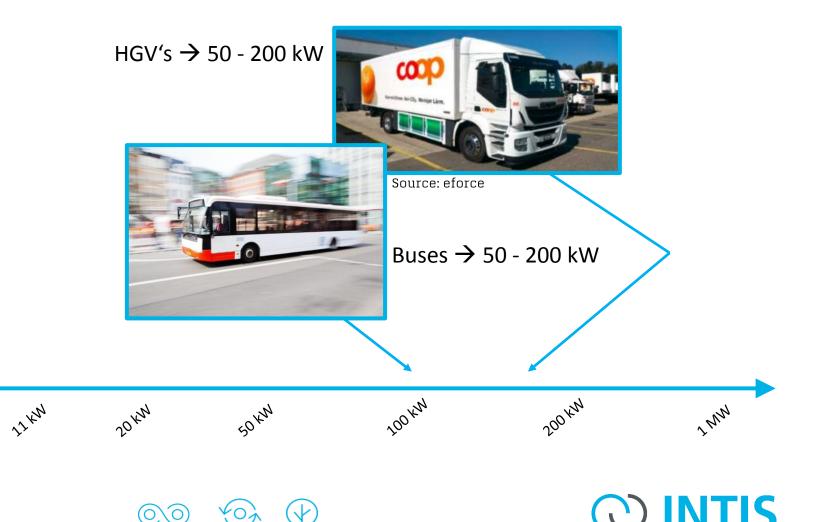
• "just drive"

(O)

ίO

500 N

Application Areas – Stationary Charging

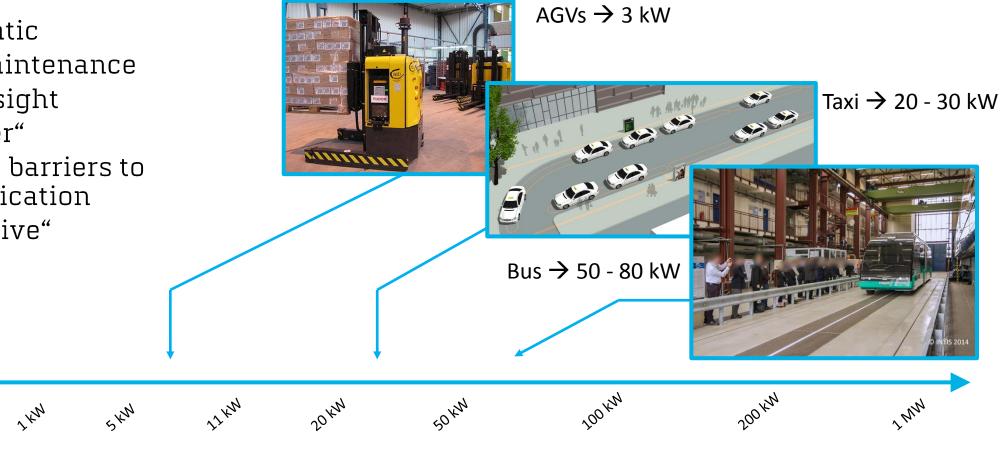

- Automatic
- Low maintenance
- Out of sight
- "Enabler"
- Reduce barriers to electrification

JKW

SKN

 \mathbf{O}

• "just drive"



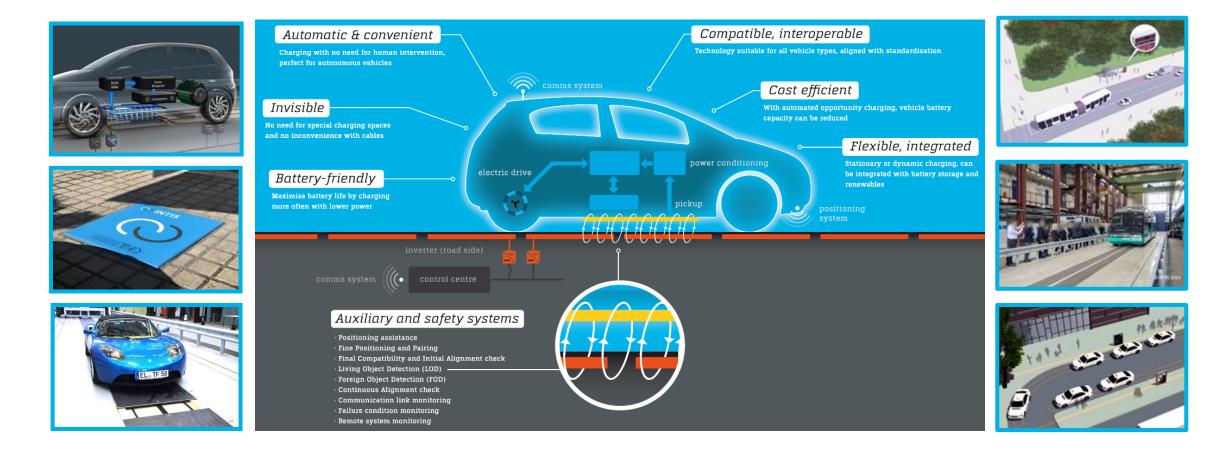
500 W

200 M

Application Areas – Dynamic Charging

- Automatic
- Low maintenance
- Out of sight
- "Enabler"
- Reduce barriers to electrification
- "just drive"

(O)


Ó

500 N

200 200 201

Inductive Charging driving transition to battery electric mobility

++ automatic ++ invisible ++ reliable ++ scalable ++ efficient ++ competitive ++ ++ extending mileage with smaller batteries ++ supporting smart grid implementations ++

Thank You!

>>> Visit INTIS at eMove360 in Munich from 15.10.-17.10.19, Hall A5, Booth No. 108

Dr. R. Effenberger

Managing Director

Driving inductive charging innovation

www.intis.de

0

© INTIS GmbH 2019